Search results
Results from the WOW.Com Content Network
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian heat capacity ratio: unitless surface tension: newton per meter (N/m) delta: change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2)
Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.) This is the reason for the terminology "elementary charge": it is meant to imply that it is an indivisible unit of charge.
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
A type of solid which does not have a definite geometric shape. ampere (A) Often abbreviated as amp. The SI base unit of electric current, defined as one coulomb of electric charge per second. amplifier. Also electronic amplifier or (informally) amp. An electronic device that can increase the power of a signal (a time-varying voltage or current).
It is common in particle physics, where units of mass and energy are often interchanged, to express mass in units of eV/c 2, where c is the speed of light in vacuum (from E = mc 2). It is common to informally express mass in terms of eV as a unit of mass, effectively using a system of natural units with c set to 1. [3] The kilogram equivalent ...
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.