enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .

  3. Partial residual plot - Wikipedia

    en.wikipedia.org/wiki/Partial_residual_plot

    Residuals = residuals from the full model, ^ = regression coefficient from the i-th independent variable in the full model, X i = the i-th independent variable. Partial residual plots are widely discussed in the regression diagnostics literature (e.g., see the References section below).

  4. Restricted maximum likelihood - Wikipedia

    en.wikipedia.org/wiki/Restricted_maximum_likelihood

    In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.

  5. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Download as PDF; Printable version; In other projects ... Lack-of-fit sum of squares; ... Partial residual plot; Partial regression plot;

  6. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.

  7. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.

  8. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    In statistics, DFFIT and DFFITS ("difference in fit(s)") are diagnostics meant to show how influential a point is in a linear regression, first proposed in 1980. [ 1 ] DFFIT is the change in the predicted value for a point, obtained when that point is left out of the regression:

  9. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    The residuals, unlike the errors, do not all have the same variance: the variance decreases as the corresponding x-value gets farther from the average x-value. This is not a feature of the data itself, but of the regression better fitting values at the ends of the domain.