Search results
Results from the WOW.Com Content Network
In its simplest implementation for linear cases such as lines, the DDA algorithm interpolates values in interval by computing for each x i the equations x i = x i−1 + 1, y i = y i−1 + m, where m is the slope of the line. This slope can be expressed in DDA as follows:
A simple way to parallelize single-color line rasterization is to let multiple line-drawing algorithms draw offset pixels of a certain distance from each other. [2] Another method involves dividing the line into multiple sections of approximately equal length, which are then assigned to different processors for rasterization. The main problem ...
Bresenham's line algorithm is a line drawing algorithm that determines the points of an n-dimensional raster that should be selected in order to form a close approximation to a straight line between two points.
The algorithm consists of drawing pairs of pixels straddling the line, each coloured according to its distance from the line. Pixels at the line ends are handled separately. Lines less than one pixel long are handled as a special case. An extension to the algorithm for circle drawing was presented by Xiaolin Wu in the book Graphics Gems II ...
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
The integrators in a DDA are implemented as accumulators, with the numeric result converted back to a pulse rate by the overflow of the accumulator. The primary advantages of a DDA over the conventional analog differential analyzer are greater precision of the results and the lack of drift/noise/slip/lash in the calculations. The precision is ...
Force-directed graph drawing algorithms assign forces among the set of edges and the set of nodes of a graph drawing.Typically, spring-like attractive forces based on Hooke's law are used to attract pairs of endpoints of the graph's edges towards each other, while simultaneously repulsive forces like those of electrically charged particles based on Coulomb's law are used to separate all pairs ...
I'd like to note that these line drawing algorithms posted by PrisonerOfPain and the Bresenham's line algorithm discussed in the article will not even work for some lines going right down. Here is an example, line start at [1,1] and ends at [3, 25] the line is going right down(in the raster coordinate system), as you will see you'll loop only 2 ...