Search results
Results from the WOW.Com Content Network
The nuclear envelope, also known as the nuclear membrane, [1] [a] is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material. The nuclear envelope consists of two lipid bilayer membranes: an inner nuclear membrane and an outer nuclear membrane. [4]
The nuclear envelope acts as a barrier that prevents both DNA and RNA viruses from entering the nucleus. Some viruses require access to proteins inside the nucleus in order to replicate and/or assemble. DNA viruses, such as herpesvirus replicate and assemble in the cell nucleus, and exit by budding through the inner nuclear membrane. This ...
The nuclear pore complex (NPC), is a large protein complex giving rise to the nuclear pore. Nuclear pores are found in the nuclear envelope that surrounds the cell nucleus in eukaryotic cells. The nuclear envelope is studded by a great number of nuclear pores that give access to various molecules, to and from the nucleoplasm and the
The protoplasmic material of the nucleus including the nucleolus labelled as nucleoplasm. The nucleoplasm, also known as karyoplasm, [1] is the type of protoplasm that makes up the cell nucleus, the most prominent organelle of the eukaryotic cell. It is enclosed by the nuclear envelope, also known as the nuclear membrane. [2]
The nuclear envelope surrounds the nucleus, separating its contents from the cytoplasm.It has two membranes, each a lipid bilayer with associated proteins. [21] The outer nuclear membrane is continuous with the rough endoplasmic reticulum membrane, and like that structure, features ribosomes attached to the surface.
The nuclear lamina is a dense (~30 to 100 nm thick) fibrillar network inside the nucleus of eukaryote cells. It is composed of intermediate filaments and membrane associated proteins . Besides providing mechanical support, the nuclear lamina regulates important cellular events such as DNA replication and cell division .
For example, a transcription factor may be directed to a nucleus, where it can promote transcription of certain genes. In terms of protein synthesis, the necessary organelles are relatively near one another. The nucleolus within the nuclear envelope is the location of ribosome synthesis.
The terminal cell elongates more than the deeper cells; then the production of a lateral bisector takes place in the inner fluid, which tends to divide the cell into two parts, of which the deeper one remains stationary, while the terminal part elongates again, forms a new inner partition, and so on.