Search results
Results from the WOW.Com Content Network
The arrangement of chromatin within the nucleus may also play a role in nuclear stress and restoring nuclear membrane deformation by mechanical stress. When chromatin is condensed, the nucleus becomes more rigid. When chromatin is decondensed, the nucleus becomes more elastic with less force exerted on the inner nuclear membrane. This ...
Nucleoplasm is quite similar to the cytoplasm, with the main difference being that nucleoplasm is found inside the nucleus while the cytoplasm is located inside the cell, outside of the nucleus. Their ionic compositions are nearly identical due to the ion pumps and permeability of the nuclear envelope, however, the proteins in these two fluids ...
In eukaryotic cells, DNA is associated with about an equal mass of histone proteins in a highly condensed nucleoprotein complex called chromatin. [14] Deoxyribonucleoproteins in this kind of complex interact to generate a multiprotein regulatory complex in which the intervening DNA is looped or wound.
The inner nuclear membrane encloses the nucleoplasm, and is covered by the nuclear lamina, a mesh of intermediate filaments which stabilizes the nuclear membrane as well as being involved in chromatin function. [9] It is connected to the outer membrane by nuclear pores which penetrate the membranes.
The organization of chromosomes into distinct regions within the nucleus was first proposed in 1885 by Carl Rabl.Later in 1909, with the help of the microscopy technology at the time, Theodor Boveri coined the termed chromosome territories after observing that chromosomes occupy individually distinct nuclear regions. [6]
The cell nucleus (from Latin nucleus or nuculeus ' kernel, seed '; pl.: nuclei) is a membrane-bound organelle found in eukaryotic cells.Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many.
The nuclear pore complex (NPC) is a crucial cellular structure with a diameter of approximately 120 nanometers in vertebrates. Its channel varies from 5.2 nanometers in humans [14] to 10.7 nm in the frog Xenopus laevis, with a depth of roughly 45 nm. [15]
The solenoid structure's most obvious function is to help package the DNA so that it is small enough to fit into the nucleus. This is a big task as the nucleus of a mammalian cell has a diameter of approximately 6 μm, whilst the DNA in one human cell would stretch to just over 2 metres long if it were unwound. [6]