Search results
Results from the WOW.Com Content Network
Competitive inhibition can be overcome by adding more substrate to the reaction, which increases the chances of the enzyme and substrate binding. As a result, competitive inhibition alters only the K m, leaving the V max the same. [3] This can be demonstrated using enzyme kinetics plots such as the Michaelis–Menten or the Lineweaver-Burk plot.
This can be competitive inhibition, uncompetitive inhibition, non-competitive inhibition or partially competitive inhibition. If the molecule induces enzymes that are responsible for its own metabolism, this is called auto-induction (or auto-inhibition if there is inhibition). These processes are particular forms of gene expression regulation.
This form of competition typically manifests in new equilibrium abundances of each prey species. For example, suppose there are two species (species A and species B), which are preyed upon by food-limited predator species C. Scientists observe an increase in the abundance of species A and a decline in the abundance of species B.
The Gaddum equation is a further generalisation of the Hill-equation, incorporating the presence of a reversible competitive antagonist. [1] The Gaddum equation is derived similarly to the Hill-equation but with 2 equilibria: both the ligand with the receptor and the antagonist with the receptor.
Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. New York: Wiley. ISBN 978-0-471-30309-1. Advanced. Fersht A (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. San Francisco: W.H. Freeman. ISBN 978-0-7167-3268-6. Schnell S, Maini PK (2004).
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site , and residues that catalyse a reaction of that substrate, the catalytic site .
The apparent value of is unaffected by competitive inhibitors. Therefore competitive inhibitors have the same intercept on the ordinate as uninhibited enzymes. Competitive inhibition increases the apparent value of , or lowers substrate affinity. Graphically this can be seen as the inhibited enzyme having a larger intercept on the abscissa.
If the protein binding is reversible, then a chemical equilibrium will exist between the bound and unbound states, such that: Protein + drug ⇌ Protein-drug complex. Notably, it is the unbound fraction which exhibits pharmacologic effects. It is also the fraction that may be metabolized and/or excreted.