Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Fig. 8 Schematic diagram of a JT liquefier. A fraction x of the compressed gas is removed as liquid. At room temperature it is supplied as gas at 1 bar, so that the system is in the steady state. The Joule-Thomson (JT) cooler was invented by Carl von Linde and William Hampson so it is also called the Linde-Hampson cooler.
The gas is further cooled by passing the gas through a Joule–Thomson orifice (expansion valve); the gas is now at the lower pressure. The low pressure gas is now at its coolest in the current cycle. Some of the gas condenses and becomes output product.
The inversion temperature in thermodynamics and cryogenics is the critical temperature below which a non-ideal gas (all gases in reality) that is expanding at constant enthalpy will experience a temperature decrease, and above which will experience a temperature increase.
The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.
The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...
This Thomson effect was predicted and later observed in 1851 by Lord Kelvin (William Thomson). [9] It describes the heating or cooling of a current-carrying conductor with a temperature gradient. If a current density J {\displaystyle \mathbf {J} } is passed through a homogeneous conductor, the Thomson effect predicts a heat production rate per ...