Search results
Results from the WOW.Com Content Network
UV–visible spectroscopy of microscopic samples is done by integrating an optical microscope with UV–visible optics, white light sources, a monochromator, and a sensitive detector such as a charge-coupled device (CCD) or photomultiplier tube (PMT). As only a single optical path is available, these are single beam instruments.
In ultraviolet-visible spectroscopy or spectroscopy in general a 1 cm pathlength cuvette is used to measure samples. The cuvette is filled with sample, light is passed through the sample and intensity readings are taken. The slope spectroscopy technique can be applied using the same methods as in absorption spectroscopy.
Ultraviolet-visible (UV-vis) spectroscopy involves energy levels that excite electronic transitions. Absorption of UV-vis light excites molecules that are in ground-states to their excited-states. [5] Visible region 400–700 nm spectrophotometry is used extensively in colorimetry science. It is a known fact that it operates best at the range ...
With the aid of these rules the UV absorption maximum can be predicted, for example in these two compounds: [8] In the compound on the left, the base value is 214 nm (a heteroannular diene). This diene group has 4 alkyl substituents (labeled 1,2,3,4) and the double bond in one ring is exocyclic to the other (adding 5 nm for an exocyclic double ...
Ultraviolet–visible spectroscopy (UV–vis) can distinguish between enantiomers by showing a distinct Cotton effect for each isomer. UV–vis spectroscopy sees only chromophores , so other molecules must be prepared for analysis by chemical addition of a chromophore such as anthracene .
In modern spectrographs in the UV, visible, and near-IR spectral ranges, the spectrum is generally given in the form of photon number per unit wavelength (nm or μm), wavenumber (μm −1, cm −1), frequency (THz), or energy (eV), with the units indicated by the abscissa.
With this source, Turner's group obtained an energy resolution of 0.02 eV. Turner referred to the method as "molecular photoelectron spectroscopy", now usually "ultraviolet photoelectron spectroscopy" or UPS. As compared to XPS, UPS is limited to energy levels of valence electrons, but measures them more accurately.
A deuterium arc lamp (or simply deuterium lamp) is a low-pressure gas-discharge light source often used in spectroscopy when a continuous spectrum in the ultraviolet region is needed. Plasma "arc" or discharge lamps using hydrogen are notable for their high output in the ultraviolet, with comparatively little output in the visible and infrared.