Search results
Results from the WOW.Com Content Network
To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is: 50 / 100 × 40 / 100 = 0.50 × 0.40 = 0.20 = 20 / 100 = 20%. It is not correct to divide by 100 and use the percent sign at the same time; it would literally imply ...
The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...
The STC or sound transmission class is a single number method of rating how well wall partitions reduce sound transmission. [3] The STC provides a standardized way to compare products such as doors and windows made by competing manufacturers. A higher number indicates more effective sound insulation than a lower number.
The airborne fraction is a scaling factor defined as the ratio of the annual increase in atmospheric CO 2 to the CO 2 emissions from human sources. [1] It represents the proportion of human emitted CO 2 that remains in the atmosphere. Observations over the past six decades show that the airborne fraction has remained relatively stable at around ...
A crucible and tongs, on a green mat. The ash content of a sample is a measure of the amount of inorganic noncombustible material it contains. The residues after a sample is completely burnt - in contrast to the ash remaining after incomplete combustion - typically consist of oxides of the inorganic elements present in the original sample.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
A second-order Butterworth filter (i.e., continuous-time filter with the flattest passband frequency response) has an underdamped Q = 1 / √ 2 . [ 11 ] A pendulum's Q-factor is: Q = Mω / Γ , where M is the mass of the bob, ω = 2 π / T is the pendulum's radian frequency of oscillation, and Γ is the frictional damping force on the ...
The concept is the same as for a large mass balance, but it is performed in the context of a limiting system (for example, one can consider the limiting case in time or, more commonly, volume). A differential mass balance is used to generate differential equations that can provide an effective tool for modelling and understanding the target system.