enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    An extension of the algorithm was developed by Leo Breiman [7] and Adele Cutler, [8] who registered [9] "Random Forests" as a trademark in 2006 (as of 2019, owned by Minitab, Inc.). [10] The extension combines Breiman's " bagging " idea and random selection of features, introduced first by Ho [ 1 ] and later independently by Amit and Geman [ 11 ...

  3. Tanagra (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tanagra_(machine_learning)

    Tanagra is a free suite of machine learning software for research and academic purposes developed by Ricco Rakotomalala at the Lumière University Lyon 2, France. [1] [2] Tanagra supports several standard data mining tasks such as: Visualization, Descriptive statistics, Instance selection, feature selection, feature construction, regression, factor analysis, clustering, classification and ...

  4. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.

  5. Talk:Random forest - Wikipedia

    en.wikipedia.org/wiki/Talk:Random_forest

    Discussions of some more exotic generalizations of random forests. There are a lot of neat, somewhat exotic models which use random forests as a base, but this has the same risk as a list of links. Significantly more examples, similar to sections 3.3,4.3,5.3,6.3,etc of the Criminisi paper I linked above.

  6. Equation of State Calculations by Fast Computing Machines

    en.wikipedia.org/wiki/Equation_of_State...

    Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. In statistical mechanics applications prior to the introduction of the Metropolis algorithm, the method consisted of generating a large number of random configurations of the system, computing the properties of interest (such as energy or density) for each configuration ...

  7. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In statistics, jackknife variance estimates for random forest are a way to estimate the variance in random forest models, in order to eliminate the bootstrap effects. Jackknife variance estimates [ edit ]

  8. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees. It was developed by Fei Tony Liu in 2008. [ 1 ] It has a linear time complexity and a low memory use, which works well for high-volume data.

  9. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    [1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1] As with other boosting methods, a gradient-boosted trees model is built in stages, but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function .