Search results
Results from the WOW.Com Content Network
In C#, a static constructor is a static data initializer. [4]: 111–112 Static constructors are also called class constructors. Since the actual method generated has the name .cctor they are often also called "cctors". [5] [6] Static constructors allow complex static variable initialization. [7]
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).
In computer programming, lazy initialization is the tactic of delaying the creation of an object, the calculation of a value, or some other expensive process until the first time it is needed.
In C++, stack unwinding is only guaranteed to occur if the exception is caught somewhere. This is because "If no matching handler is found in a program, the function terminate() is called; whether or not the stack is unwound before this call to terminate() is implementation-defined (15.5.1)." (C++03 standard, §15.3/9). [18]
Unlike C++'s const, Java's final, and C#'s readonly, they are transitive and recursively apply to anything reachable through references of such a variable. The difference between const and immutable is what they apply to: const is a property of the variable: there might legally exist mutable references to referred value, i.e. the value can ...
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
C# 3.0 introduced type inference, allowing the type specifier of a variable declaration to be replaced by the keyword var, if its actual type can be statically determined from the initializer. This reduces repetition, especially for types with multiple generic type-parameters , and adheres more closely to the DRY principle.
The factory method design pattern solves problems such as: How can an object's subclasses redefine its subsequent and distinct implementation? The pattern involves creation of a factory method within the superclass that defers the object's creation to a subclass's factory method.