enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    For computing the PMF, a DFT algorithm or a recursive algorithm can be specified to compute the exact PMF, and approximation methods using the normal and Poisson distribution can also be specified. poibin - Python implementation - can compute the PMF and CDF, uses the DFT method described in the paper for doing so.

  3. Probability mass function - Wikipedia

    en.wikipedia.org/wiki/Probability_mass_function

    The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]

  4. Zero-truncated Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Zero-truncated_Poisson...

    Thus it is impossible for a ZTP random variable to be zero. Consider for example the random variable of the number of items in a shopper's basket at a supermarket checkout line. Presumably a shopper does not stand in line with nothing to buy (i.e., the minimum purchase is 1 item), so this phenomenon may follow a ZTP distribution. [3]

  5. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    The probability generating function is an example of a generating function of a sequence: see also formal power series. It is equivalent to, and sometimes called, the z-transform of the probability mass function.

  6. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Kumaraswamy distribution is as versatile as the Beta distribution but has simple closed forms for both the cdf and the pdf. The logit metalog distribution, which is highly shape-flexible, has simple closed forms, and can be parameterized with data using linear least squares.

  7. CDF-based nonparametric confidence interval - Wikipedia

    en.wikipedia.org/wiki/CDF-based_nonparametric...

    In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...

  8. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  9. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.