Search results
Results from the WOW.Com Content Network
whenever x > y and y > z, then also x > z whenever x ≥ y and y ≥ z, then also x ≥ z whenever x = y and y = z, then also x = z. More examples of transitive relations: "is a subset of" (set inclusion, a relation on sets) "divides" (divisibility, a relation on natural numbers) "implies" (implication, symbolized by "⇒", a relation on ...
A law of trichotomy on some set X of numbers usually expresses that some tacitly given ordering relation on X is a trichotomous one. An example is the law "For arbitrary real numbers x and y, exactly one of x < y, y < x, or x = y applies"; some authors even fix y to be zero, [1] relying on the real number's additive linearly ordered group structure.
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
a 2-cycle such as (1 2) maps to the product of three 2-cycles such as (1 2)(3 4)(5 6) and vice versa, there being 15 permutations each way; the product of a 2-cycle and a 3-cycle such as (1 2 3)(4 5) maps to a 6-cycle such as (1 2 5 3 4 6) and vice versa, accounting for 120 permutations each way;
7.5.4 Unions ⋃ of Π. 7.5.5 ... this section is divided based on where the set subtraction operation and parentheses are located on the left hand side of the identity.
An element x is called invertible if there exists an element y such that x • y = e and y • x = e. The element y is called the inverse of x. Inverses, if they exist, are unique: if y and z are inverses of x, then by associativity y = ey = (zx)y = z(xy) = ze = z. [6] If x is invertible, say with inverse y, then one can define negative powers ...
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]
A permutation group G on the set X is transitive if for every pair of elements x and y in X there is at least one g in G such that y = x g. A transitive permutation group is regular (or sometimes referred to as sharply transitive ) if the only permutation in the group that has fixed points is the identity permutation.