enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    Tunneling applications include the tunnel diode, [5] quantum computing, flash memory, and the scanning tunneling microscope. Tunneling limits the minimum size of devices used in microelectronics because electrons tunnel readily through insulating layers and transistors that are thinner than about 1 nm.

  3. Scanning tunneling spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_tunneling...

    One such example of this limitation is an atom adsorbed onto a surface. The image will result in some perturbation of the height at this point. A detailed analysis of the way in which an image is formed shows that the transmission of the electric current between the tip and the sample depends on two factors: (1) the geometry of the sample and ...

  4. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    This thin, non-conducting layer may then be modeled by a barrier potential as above. Electrons may then tunnel from one material to the other giving rise to a current. The operation of a scanning tunneling microscope (STM) relies on this tunneling effect. In that case, the barrier is due to the gap between the tip of the STM and the underlying ...

  5. Scanning tunneling microscope - Wikipedia

    en.wikipedia.org/wiki/Scanning_tunneling_microscope

    Image of reconstruction on a clean surface of gold. A scanning tunneling microscope (STM) is a type of scanning probe microscope used for imaging surfaces at the atomic level. . Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1

  6. Tunnel ionization - Wikipedia

    en.wikipedia.org/wiki/Tunnel_ionization

    In physics, tunnel ionization is a process in which electrons in an atom (or a molecule) tunnel through the potential barrier and escape from the atom (or molecule). In an intense electric field, the potential barrier of an atom (molecule) is distorted drastically. Therefore, as the length of the barrier that electrons have to pass decreases ...

  7. Photoionization - Wikipedia

    en.wikipedia.org/wiki/Photoionization

    In the case of molecules, the photoionization cross-section can be estimated by examination of Franck-Condon factors between a ground-state molecule and the target ion. This can be initialized by computing the vibrations of a molecule and associated cation (post ionization) using quantum chemical software e.g. QChem.

  8. Applications of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Applications_of_quantum...

    The application of quantum mechanics to chemistry is known as quantum chemistry. Quantum mechanics can also provide quantitative insight into ionic and covalent bonding processes by explicitly showing which molecules are energetically favorable to which others and the magnitudes of the energies involved. [1]

  9. Klein paradox - Wikipedia

    en.wikipedia.org/wiki/Klein_paradox

    In relativistic quantum mechanics, the Klein paradox (also known as Klein tunneling) is a quantum phenomenon related to particles encountering high-energy potential barriers. It is named after physicist Oskar Klein who discovered in 1929. [ 1 ]