Search results
Results from the WOW.Com Content Network
The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [1]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon. [1]: pp. 49–50 This led to the question being posed: is it possible to construct all regular polygons with compass and straightedge?
As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1] This proof represented the first progress in regular polygon construction in over 2000 years. [1]
[2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).
Articles related to constructible regular polygons, i.e. those amenable to compass and straightedge construction. Carl Friedrich Gauss proved that a regular polygon is constructible if its number of sides has no odd prime factors that are not Fermat primes, and no odd prime factors that are raised to a power of 2 or higher.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
However, it is constructible using neusis, or an angle trisector. The following is an animation from a neusis construction of a regular tridecagon with radius of circumcircle O A ¯ = 12 , {\displaystyle {\overline {OA}}=12,} according to Andrew M. Gleason , [ 1 ] based on the angle trisection by means of the Tomahawk (light blue).
Constructible set (topology), a finite union of locally closed sets; Constructible topology, a topology on the spectrum of a commutative ring y in which every closed set is the image of Spec(B) in Spec(A) for some algebra B over A; Constructible universe, Kurt Gödel's model L of set theory, constructed by transfinite recursion
Dih 15 has 3 dihedral subgroups: Dih 5, Dih 3, and Dih 1. And four more cyclic symmetries: Z 15, Z 5, Z 3, and Z 1, with Z n representing π/n radian rotational symmetry. On the pentadecagon, there are 8 distinct symmetries. John Conway labels these symmetries with a letter and order of the symmetry follows the letter. [3]