Search results
Results from the WOW.Com Content Network
Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...
The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space.
That is, (hkℓ) simply indicates a normal to the planes in the basis of the primitive reciprocal lattice vectors. Because the coordinates are integers, this normal is itself always a reciprocal lattice vector. The requirement of lowest terms means that it is the shortest reciprocal lattice vector in the given direction.
Every crystal is a periodic structure which can be characterized by a Bravais lattice, and for each Bravais lattice we can determine the reciprocal lattice, which encapsulates the periodicity in a set of three reciprocal lattice vectors (b 1, b 2, b 3).
If it does span , then is called the dual basis or reciprocal basis for the basis . Denoting the indexed vector sets as B = { v i } i ∈ I {\displaystyle B=\{v_{i}\}_{i\in I}} and B ∗ = { v i } i ∈ I {\displaystyle B^{*}=\{v^{i}\}_{i\in I}} , being biorthogonal means that the elements pair to have an inner product equal to 1 if the indexes ...
For example, in a crystal's k-space, there is an infinite set of points called the reciprocal lattice which are "equivalent" to k = 0 (this is analogous to aliasing). Likewise, the " first Brillouin zone " is a finite volume of k -space, such that every possible k is "equivalent" to exactly one point in this region.
Another helpful ingredient in the proof is the reciprocal lattice vectors. These are three vectors b 1, b 2, b 3 (with units of inverse length), with the property that a i · b i = 2π, but a i · b j = 0 when i ≠ j. (For the formula for b i, see reciprocal lattice vector.)
Let denote a lattice in and the corresponding reciprocal lattice. The theorem of Petersen and Middleton [1] states that a function () that is wavenumber-limited to a set can be exactly reconstructed from its measurements on provided that the set does not overlap with any of its shifted versions + where the shift x is any nonzero element of the reciprocal lattice .