enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    (n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.

  3. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  4. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  5. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    It can be used to solve a variety of counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins. [4] The solution to this particular problem is given by the binomial coefficient ( n + k − 1 k − 1 ) {\displaystyle {\tbinom {n+k-1}{k-1}}} , which is the number of subsets of size k − 1 ...

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    The most direct solution would be to try all permutations (ordered combinations) and see which one is cheapest (using brute-force search). The running time for this approach lies within a polynomial factor of (!), the factorial of the number of cities, so this solution becomes impractical even for only 20 cities.

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling

  8. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  9. 24 (puzzle) - Wikipedia

    en.wikipedia.org/wiki/24_(puzzle)

    The original version of 24 is played with an ordinary deck of playing cards with all the face cards removed. The aces are taken to have the value 1 and the basic game proceeds by having 4 cards dealt and the first player that can achieve the number 24 exactly using only allowed operations (addition, subtraction, multiplication, division, and parentheses) wins the hand.