Search results
Results from the WOW.Com Content Network
Quaternions give a simple way to encode this [7] axis–angle representation using four real numbers, and can be used to apply (calculate) the corresponding rotation to a position vector (x,y,z), representing a point relative to the origin in R 3. Euclidean vectors such as (2, 3, 4) or (a x, a y, a z) can be rewritten as 2 i + 3 j + 4 k or a x ...
In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.
A quaternion of the form a + 0 i + 0 j + 0 k, where a is a real number, is called scalar, and a quaternion of the form 0 + b i + c j + d k, where b, c, and d are real numbers, and at least one of b, c, or d is nonzero, is called a vector quaternion. If a + b i + c j + d k is any quaternion, then a is called its scalar part and b i + c j + d k ...
The metric g can take up to two vectors or vector fields X, Y as arguments. In the former case the output is a number, the (pseudo-)inner product of X and Y. In the latter case, the inner product of X p, Y p is taken at all points p on the manifold so that g(X, Y) defines a smooth function on M. Vector fields act (by definition) as differential ...
In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = = + , =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).
The quaternion product AC is a linear transformation by the operator A of the components of the quaternion C, therefore there is a matrix representation of A operating on the vector formed from the components of C. Assemble the components of the quaternion C = c 0 + C into the array C = (C 1, C 2, C 3, c 0). Notice that the components of the ...
A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:
The sum of the entries along the main diagonal (the trace), plus one, equals 4 − 4(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2 w 2 + 2 w 2 − 1 ; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2 x 2 + 2 w 2 − 1 , 2 y 2 + 2 w 2 − 1 , and 2 z 2 + 2 w ...