enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    The formula is valid for all index values, and for any n (when n = 0 or n = 1, this is the empty product). However, computing the formula above naively has a time complexity of O( n 2 ) , whereas the sign can be computed from the parity of the permutation from its disjoint cycles in only O( n log( n )) cost.

  3. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    A quaternion of the form a + 0 i + 0 j + 0 k, where a is a real number, is called scalar, and a quaternion of the form 0 + b i + c j + d k, where b, c, and d are real numbers, and at least one of b, c, or d is nonzero, is called a vector quaternion. If a + b i + c j + d k is any quaternion, then a is called its scalar part and b i + c j + d k ...

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:

  6. Dual quaternion - Wikipedia

    en.wikipedia.org/wiki/Dual_quaternion

    The quaternion product AC is a linear transformation by the operator A of the components of the quaternion C, therefore there is a matrix representation of A operating on the vector formed from the components of C. Assemble the components of the quaternion C = c 0 + C into the array C = (C 1, C 2, C 3, c 0). Notice that the components of the ...

  7. Versor - Wikipedia

    en.wikipedia.org/wiki/Versor

    In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = ⁡ = ⁡ + ⁡, =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).

  8. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The metric g can take up to two vectors or vector fields X, Y as arguments. In the former case the output is a number, the (pseudo-)inner product of X and Y. In the latter case, the inner product of X p, Y p is taken at all points p on the manifold so that g(X, Y) defines a smooth function on M. Vector fields act (by definition) as differential ...

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The sum of the entries along the main diagonal (the trace), plus one, equals 44(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2 w 2 + 2 w 2 − 1 ; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2 x 2 + 2 w 2 − 1 , 2 y 2 + 2 w 2 − 1 , and 2 z 2 + 2 w ...