enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CURE algorithm - Wikipedia

    en.wikipedia.org/wiki/CURE_algorithm

    Partitioning : The basic idea is to partition the sample space into p partitions. Each partition contains n/p elements. The first pass partially clusters each partition until the final number of clusters reduces to n/pq for some constant q ≥ 1. A second clustering pass on n/q partially clusters partitions. For the second pass only the ...

  3. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    The "goodness" of the given value of k can be assessed with methods such as the silhouette method. The medoid of a cluster is defined as the object in the cluster whose sum (and, equivalently, the average) of dissimilarities to all the objects in the cluster is minimal, that is, it is a most centrally located point in the cluster.

  4. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Unlike partitioning and hierarchical methods, density-based clustering algorithms are able to find clusters of any arbitrary shape, not only spheres. The density-based clustering algorithm uses autonomous machine learning that identifies patterns regarding geographical location and distance to a particular number of neighbors.

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Commonly used initialization methods are Forgy and Random Partition. [10] The Forgy method randomly chooses k observations from the dataset and uses these as the initial means. The Random Partition method first randomly assigns a cluster to each observation and then proceeds to the update step, thus computing the initial mean to be the centroid ...

  6. Consensus clustering - Wikipedia

    en.wikipedia.org/wiki/Consensus_clustering

    Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...

  7. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    This led to the development of pre-clustering methods such as canopy clustering, which can process huge data sets efficiently, but the resulting "clusters" are merely a rough pre-partitioning of the data set to then analyze the partitions with existing slower methods such as k-means clustering.

  8. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  9. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    The general approach to spectral clustering is to use a standard clustering method (there are many such methods, k-means is discussed below) on relevant eigenvectors of a Laplacian matrix of . There are many different ways to define a Laplacian which have different mathematical interpretations, and so the clustering will also have different ...