enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    In machine learning, the delta rule is a gradient descent learning rule for updating the weights of the inputs to artificial neurons in a single-layer neural network. [1]

  3. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    Sometimes only when the Widrow-Hoff is applied to binary targets specifically, it is referred to as Delta Rule, but the terms seem to be used often interchangeably. The delta rule is considered to a special case of the back-propagation algorithm. Delta rule also closely resembles the Rescorla-Wagner model under which Pavlovian conditioning ...

  4. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant . [ 1 ]

  5. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.

  6. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible.

  7. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is the problem of greatly diverging gradient magnitudes between earlier and later layers encountered when training neural networks with backpropagation.

  8. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    In this case, player allocates higher weight to the actions that had a better outcome and choose his strategy relying on these weights. In machine learning, Littlestone applied the earliest form of the multiplicative weights update rule in his famous winnow algorithm, which is similar to Minsky and Papert's earlier perceptron learning algorithm ...

  9. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Since 7 October 2024, Python 3.13 is the latest stable release, and it and, for few more months, 3.12 are the only releases with active support including for bug fixes (as opposed to just for security) and Python 3.9, [55] is the oldest supported version of Python (albeit in the 'security support' phase), due to Python 3.8 reaching end-of-life.