Search results
Results from the WOW.Com Content Network
For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.
Here, 36 is the least common multiple of 12 and 18. Their product, 216, is also a common denominator, but calculating with that denominator involves larger numbers ...
The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways. The highly composite number: 10080 10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7
A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.
14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.
LCM may refer to: Computing and mathematics. Latent class model, a concept in statistics; Least common multiple, a function of two integers; Living Computer Museum;
The arithmetic billiard for the numbers 15 and 40: the greatest common divisor is 5, the least common multiple is 120. In recreational mathematics, arithmetic billiards provide a geometrical method to determine the least common multiple (LCM) and the greatest common divisor (GCD) of two natural numbers. It makes use of reflections inside a ...
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n