Search results
Results from the WOW.Com Content Network
The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following: Radius and ...
For a cone, the lateral surface area would be π r⋅l where r is the radius of the circle at the bottom of the cone and l is the lateral height (the length of a line segment from the apex of the cone along its side to its base) of the cone (given by the Pythagorean theorem l= √ r 2 + h 2 where h is the height of the cone)
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth ...
The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A /2 and r = 1 . The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ , is the area of a spherical cap on a unit sphere
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
The lateral surface of a right cylinder is the meeting of the generatrices. [3] It can be obtained by the product between the length of the circumference of the base and the height of the cylinder. Therefore, the lateral surface area is given by: =. [2] Where: represents the lateral surface area of the cylinder; is approximately 3.14;
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.