enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    /// Performs a Karatsuba square root on a `u64`. pub fn u64_isqrt (mut n: u64)-> u64 {if n <= u32:: MAX as u64 {// If `n` fits in a `u32`, let the `u32` function handle it. return u32_isqrt (n as u32) as u64;} else {// The normalization shift satisfies the Karatsuba square root // algorithm precondition "a₃ ≥ b/4" where a₃ is the most ...

  3. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  4. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:

  6. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  9. Function (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Function_(computer...

    Most modern programming languages provide features to define and call functions, including syntax for accessing such features, including: Delimit the implementation of a function from the rest of the program; Assign an identifier, name, to a function; Define formal parameters with a name and data type for each; Assign a data type to the return ...