Search results
Results from the WOW.Com Content Network
In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
Determine the structure of the learned function and corresponding learning algorithm. For example, one may choose to use support-vector machines or decision trees. Complete the design. Run the learning algorithm on the gathered training set. Some supervised learning algorithms require the user to determine certain control parameters.
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
Vector processors, some SIMD ISAs (such as AVX2 and AVX-512) and GPUs in general make heavy use of predication, applying one bit of a conditional mask vector to the corresponding elements in the vector registers being processed, whereas scalar predication in scalar instruction sets only need the one predicate bit.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
It is the vector equivalent of register indirect addressing, with gather involving indexed reads, and scatter, indexed writes. Vector processors (and some SIMD units in CPUs ) have hardware support for gather and scatter operations, as do many input/output systems, allowing large data sets to be transferred to main memory more rapidly.