Search results
Results from the WOW.Com Content Network
Silicon crystal being grown by the Czochralski method at Raytheon, 1956. The induction heating coil is visible, and the end of the crystal is just emerging from the melt. The technician is measuring the temperature with an optical pyrometer. The crystals produced by this early apparatus, used in an early Si plant, were only one inch in diameter.
The diameters of float-zone wafers are generally not greater than 200 mm due to the surface tension limitations during growth. A polycrystalline rod of ultrapure electronic-grade silicon is passed through an RF heating coil, which creates a localized molten zone from which the crystal ingot grows. A seed crystal is used at one end to start the ...
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and
A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 [1] and Solomon Pekar in 1946 [2] to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron ...
Crystal growth is a major stage of a crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. [ 1 ] [ 2 ] The growth typically follows an initial stage of either homogeneous or heterogeneous (surface catalyzed) nucleation , unless a "seed ...
Crystallography ranges from the fundamentals of crystal structure to the mathematics of crystal geometry, including those that are not periodic or quasicrystals. At the atomic scale it can involve the use of X-ray diffraction to produce experimental data that the tools of X-ray crystallography can convert into detailed positions of atoms, and ...
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)