Search results
Results from the WOW.Com Content Network
Commercially available nitric acid is an azeotrope with water at a concentration of 68% HNO 3. This solution has a boiling temperature of 120.5 °C (249 °F) at 1 atm. It is known as "concentrated nitric acid". The azeotrope of nitric acid and water is a colourless liquid at room temperature.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.
The various triple points of water Phases in stable equilibrium Pressure Temperature liquid water, ice I h, and water vapor 611.657 Pa [8] 273.16 K (0.01 °C) liquid water, ice I h, and ice III: 209.9 MPa 251 K (−22 °C) liquid water, ice III, and ice V: 350.1 MPa −17.0 °C liquid water, ice V, and ice VI: 632.4 MPa 0.16 °C
Most of the water is condensed out, and the gases are further cooled; the nitric oxide that was produced is oxidized to nitrogen dioxide, which is then dimerized into nitrogen tetroxide: 2 NO + O 2 → 2 NO 2 2 NO 2 ⇌ N 2 O 4. and the remainder of the water is removed as nitric acid. The gas is essentially pure nitrogen dioxide, which is ...
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
Monomethylhydrazine (MMH) is a highly toxic, volatile hydrazine derivative with the chemical formula CH 6 N 2.It is used as a rocket propellant in bipropellant rocket engines because it is hypergolic with various oxidizers such as nitrogen tetroxide (N 2 O 4) and nitric acid (HNO 3).