enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  3. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a. This illustrates the relationship ⁠ a + b / a ⁠ = ⁠ a / b ⁠ = φ.

  4. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...

  5. Portal:Mathematics/Selected article/38 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    At least since the Renaissance, many artists and architects have proportioned their works to approximate the golden ratio—especially in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio—believing this proportion to be aesthetically pleasing.

  6. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    The result, though not a true logarithmic spiral, closely approximates a golden spiral. [2] Another approximation is a Fibonacci spiral, which is constructed slightly differently. A Fibonacci spiral starts with a rectangle partitioned into 2 squares. In each step, a square the length of the rectangle's longest side is added to the rectangle.

  7. Supergolden ratio - Wikipedia

    en.wikipedia.org/wiki/Supergolden_ratio

    A supergolden rectangle is a rectangle whose side lengths are in a ⁠: ⁠ ratio. Compared to the golden rectangle , the supergolden rectangle has one more degree of self-similarity . Given a rectangle of height 1 , length ⁠ ψ {\displaystyle \psi } ⁠ and diagonal length ψ 3 {\displaystyle {\sqrt {\psi ^{3}}}} (according to 1 + ψ 2 = ψ ...

  8. Silver ratio - Wikipedia

    en.wikipedia.org/wiki/Silver_ratio

    In mathematics, the silver ratio is a geometrical proportion close to 70/29.Its exact value is 1 + √2, the positive solution of the equation x 2 = 2x + 1.. The name silver ratio results from analogy with the golden ratio, the positive solution of the equation x 2 = x + 1.

  9. Metallic mean - Wikipedia

    en.wikipedia.org/wiki/Metallic_mean

    Consider a rectangle such that the ratio of its length L to its width W is the n th metallic ratio. If one remove from this rectangle n squares of side length W, one gets a rectangle similar to the original rectangle; that is, a rectangle with the same ratio of the length to the width (see figures).