Search results
Results from the WOW.Com Content Network
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a. This illustrates the relationship a + b / a = a / b = φ.
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
At least since the Renaissance, many artists and architects have proportioned their works to approximate the golden ratio—especially in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio—believing this proportion to be aesthetically pleasing.
Other scholars question whether the golden ratio was known to or used by Greek artists and architects as a principle of aesthetic proportion. [11] Building the Acropolis is calculated to have been started around 600 BC, but the works said to exhibit the golden ratio proportions were created from 468 BC to 430 BC.
Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, π / 2 radians) and two other congruent angles each measuring half of a right angle (45°, or ...
Tired of stirring—and intimidated by timing it right? Try Ina’s easy trick for this crowd-pleasing creamy side dish.
For example, start with a 1-by-Φ rectangle, where Φ is the golden ratio. Add an adjacent Φ-by-Φ square and get another golden rectangle. Add an adjacent (1+Φ)-by-(1+Φ) square and get a larger golden rectangle, and so on. Now, in order to separate more than 1/3 of the shapes, the separator must separate O(N) shapes from two different vertices.