enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In probability theory, the joint probability distribution is the probability distribution of all possible pairs of outputs of two random variables that are defined on the same probability space. The joint distribution can just as well be considered for any given number of random variables.

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...

  5. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    A generative model is a statistical model of the joint probability distribution (,) on a given observable variable X and target variable Y; [1] A generative model can be used to "generate" random instances of an observation x.

  6. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables. [1]

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations. [1] [2] [3] When evaluated on the actual data points, it becomes a function solely of the model parameters.

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).

  9. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.