Search results
Results from the WOW.Com Content Network
A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and structure, which is much lower energy than the fast neutrons initially produced by fission.)
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
A fast neutron reactor uses fast neutrons, so it does not use a moderator. Moderators may absorb a lot of neutrons in a thermal reactor, and fast fission produces a higher average number of neutrons per fission, so fast reactors have better neutron economy making a plutonium breeder reactor possible.
In a normal thermal reactor, tin-121m has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce 121m Sn at higher yields. For example, its yield from U-235 is 0.0007% per thermal fission and 0.002% per fast fission. [10]
For "thermal" (slow-neutron) fission reactors, the typical prompt neutron lifetime is on the order of 10 −4 seconds, and for fast fission reactors, the prompt neutron lifetime is on the order of 10 −7 seconds. [16] These extremely short lifetimes mean that in 1 second, 10,000 to 10,000,000 neutron lifetimes can pass.
A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons (i.e., a thermal system) or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.
Production of heavy transuranic actinides in current thermal-neutron fission reactors through neutron capture and decays. Starting at uranium-238, isotopes of plutonium, americium, and curium are all produced. In a fast neutron-breeder reactor, all these isotopes may be burned as fuel. Many types of breeder reactor are possible:
The ratio of neutrons released per neutron absorbed (η) in 233 U is greater than two over a wide range of energies, including the thermal spectrum. A breeding reactor in the uranium–plutonium cycle needs to use fast neutrons, because in the thermal spectrum one neutron absorbed by 239 Pu on average leads to less than two neutrons.