Search results
Results from the WOW.Com Content Network
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.
While Lobachevsky created a non-Euclidean geometry by negating the parallel postulate, Bolyai worked out a geometry where both the Euclidean and the hyperbolic geometry are possible depending on a parameter k. Bolyai ends his work by mentioning that it is not possible to decide through mathematical reasoning alone if the geometry of the ...
The conventional meaning of Non-Euclidean geometry is the one set in the nineteenth century: the fields of elliptic geometry and hyperbolic geometry created by dropping the parallel postulate. These are very special types of Riemannian geometry , of constant positive curvature and constant negative curvature respectively.
Forum Geometricorum: A Journal on Classical Euclidean Geometry was a peer-reviewed open-access academic journal that specialized in mathematical research papers on Euclidean geometry. [ 1 ] Founded in 2001, it was published by Florida Atlantic University and was indexed by Mathematical Reviews [ 2 ] and Zentralblatt MATH . [ 3 ]
Euclidean geometry is an axiomatic system, in which all theorems ("true statements") are derived from a small number of simple axioms. Until the advent of non-Euclidean geometry, these axioms were considered to be obviously true in the physical world, so that all the theorems would be equally true. However, Euclid's reasoning from assumptions ...
Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms , do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic .
A geometry where the parallel postulate does not hold is known as a non-Euclidean geometry. Geometry that is independent of Euclid's fifth postulate (i.e., only assumes the modern equivalent of the first four postulates) is known as absolute geometry (or sometimes "neutral geometry").