Search results
Results from the WOW.Com Content Network
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.
One example: oriented (i.e., reflections not included) elliptic geometry (i.e., the surface of an n-sphere with opposite points identified) and oriented spherical geometry (the same non-Euclidean geometry, but with opposite points not identified) have isomorphic automorphism group, SO(n+1) for even n. These may appear to be distinct.
While Lobachevsky created a non-Euclidean geometry by negating the parallel postulate, Bolyai worked out a geometry where both the Euclidean and the hyperbolic geometry are possible depending on a parameter k. Bolyai ends his work by mentioning that it is not possible to decide through mathematical reasoning alone if the geometry of the ...
The theorems of absolute geometry hold in hyperbolic geometry, which is a non-Euclidean geometry, as well as in Euclidean geometry. [9] Absolute geometry is inconsistent with elliptic geometry: in that theory, there are no parallel lines at all, but it is a theorem of absolute geometry that parallel lines do exist. However, it is possible to ...
The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
Within contemporary geometry there are many kinds of geometry that are quite different from Euclidean geometry, first encountered in the forms of elementary geometry, plane geometry of triangles and circles, and solid geometry. The conventional meaning of Non-Euclidean geometry is the one set in the nineteenth century: the fields of elliptic ...
The group SO + (1,n) is the full group of orientation-preserving isometries of the n-dimensional hyperbolic space. In more concrete terms, SO + (1,n) can be split into n(n-1)/2 rotations (formed with a regular Euclidean rotation matrix in the lower-right block) and n hyperbolic translations, which take the form