Search results
Results from the WOW.Com Content Network
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
Galactoside permease is a protein coded by the lacY gene of the lac operon, and is found bound to the membrane of a cell for the purpose of binding galactoside molecules that have been solubilized. The protein is part of a system whose main function is to catalyze the accumulation and transport of lactose and other beta-galactosides across the ...
The enzyme's role in the classical E.coli lac operon remains unclear. [ 1 ] [ 3 ] However, the enzyme's cellular role may be to detoxify non-metabolizable pyranosides by acetylating them and preventing their reentry into the cell.
The lac operon is used in the biotechnology industry for production of recombinant proteins for therapeutic use. The gene or genes for producing an exogenous protein are placed on a plasmid under the control of the lac promoter. Initially the cells are grown in a medium that does not contain lactose or other sugars, so the new genes are not ...
The lacZYA operon houses genes encoding proteins needed for lactose breakdown. [2] The lacI gene codes for a protein called "the repressor" or "the lac repressor", which functions to repressor of the lac operon. [2] The gene lacI is situated immediately upstream of lacZYA but is transcribed from a lacI promoter. [2]
In E. coli, the lacZ gene is the structural gene for β-galactosidase; which is present as part of the inducible system lac operon which is activated in the presence of lactose when glucose level is low. β-Galactosidase synthesis stops when glucose levels are sufficient. [2] β-Galactosidase has many homologues based on similar sequences.
The Lac operon is an interesting example of how gene expression can be regulated. Viruses, despite having only a few genes, possess mechanisms to regulate their gene expression, typically into an early and late phase, using collinear systems regulated by anti-terminators (lambda phage) or splicing modulators .
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.