enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  3. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This formula is known as the symmetric difference quotient. In this case the first-order errors cancel, so the slope of these secant lines differ from the slope of the tangent line by an amount that is approximately proportional to h 2 {\displaystyle h^{2}} .

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  7. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6

  8. Rate (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rate_(mathematics)

    In mathematics, a rate is the quotient of two quantities, often represented as a fraction. [1] If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change ...

  9. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).