enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    The divergence of a tensor field () is defined using the recursive relation = ; = () where c is an arbitrary constant vector and v is a vector field. If T {\displaystyle {\boldsymbol {T}}} is a tensor field of order n > 1 then the divergence of the field is a tensor of order n − 1.

  3. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    But for the higher order terms (the two coming from the divergence of the deviatoric stress that distinguish Navier–Stokes equations from Euler equations) some tensor calculus is required for deducing an expression in non-cartesian orthogonal coordinate systems.

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of the stress tensor is lost. However, the stress tensor still has some important uses, especially in formulating boundary conditions at fluid interfaces. Recalling that σ = −pI + τ, for a Newtonian fluid ...

  5. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  6. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux). [12]

  7. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    As it is a second order tensor, the stress deviator tensor also has a set of invariants, which can be obtained using the same procedure used to calculate the invariants of the stress tensor. It can be shown that the principal directions of the stress deviator tensor s i j {\displaystyle s_{ij}} are the same as the principal directions of the ...

  8. Contracted Bianchi identities - Wikipedia

    en.wikipedia.org/wiki/Contracted_Bianchi_identities

    In general relativity and tensor calculus, the contracted Bianchi identities are: [1] = where is the Ricci tensor, the scalar curvature, and indicates covariant differentiation.

  9. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    By expressing the shear tensor in terms of viscosity and fluid velocity, and assuming constant density and viscosity, the Cauchy momentum equation will lead to the Navier–Stokes equations. By assuming inviscid flow, the Navier–Stokes equations can further simplify to the Euler equations. The divergence of the stress tensor can be written as