Search results
Results from the WOW.Com Content Network
velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is determined by considering the limiting value of the slopes of the second lines.
The definitions are applied to graphs as follows. If a function (a -cochain) is defined at the nodes of a graph: ,,, … then its exterior derivative (or the differential) is the difference, i.e., the following function defined on the edges of the graph (-cochain):
The simplest example is the ring of dual numbers R[ε], where ε 2 = 0. This can be motivated by the algebro-geometric point of view on the derivative of a function f from R to R at a point p. For this, note first that f − f(p) belongs to the ideal I p of functions on R which vanish at p.
A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}