Search results
Results from the WOW.Com Content Network
In quantum mechanics, position and momentum are conjugate variables. For a single particle described in the position basis the momentum operator can be written as = =, where ∇ is the gradient operator, ħ is the reduced Planck constant, and i is the imaginary unit. This is a commonly encountered form of the momentum operator, though the ...
Symbol Meaning SI unit of measure magnetic vector potential: tesla meter (T⋅m) area: square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density
Since the partial derivative is a linear operator, the momentum operator is also linear, and because any wave function can be expressed as a superposition of other states, when this momentum operator acts on the entire superimposed wave, it yields the momentum eigenvalues for each plane wave component. These new components then superimpose to ...
The abbreviation is not always a short form of the word used in the clue. For example: "Knight" for N (the symbol used in chess notation) Taking this one stage further, the clue word can hint at the word or words to be abbreviated rather than giving the word itself. For example: "About" for C or CA (for "circa"), or RE.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.
Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with units of [mass][length][time] −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .