enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The first deterministic primality test significantly faster than the naive methods was the cyclotomy test; its runtime can be proven to be O((log n) c log log log n), where n is the number to test for primality and c is a constant independent of n. Many further improvements were made, but none could be proven to have polynomial running time.

  3. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    As mentioned above, most applications use a Miller–Rabin or Baillie–PSW test for primality. Sometimes a Fermat test (along with some trial division by small primes) is performed first to improve performance. GMP since version 3.0 uses a base-210 Fermat test after trial division and before running Miller–Rabin tests.

  5. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    The Miller–Rabin primality test uses the following extension of Fermat's little theorem: [14] If p is an odd prime and p − 1 = 2 s d with s > 0 and d odd > 0, then for every a coprime to p , either a d ≡ 1 (mod p ) or there exists r such that 0 ≤ r < s and a 2 r d ≡ −1 (mod p ) .

  6. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  7. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    This makes the test a fast polynomial-time algorithm. But Fermat numbers grow so rapidly that only a handful of them can be tested in a reasonable amount of time and space. There are some tests for numbers of the form k 2 m + 1, such as factors of Fermat numbers, for primality. Proth's theorem (1878). Let N = k 2 m + 1 with odd k < 2 m.

  8. Primality Testing for Beginners - Wikipedia

    en.wikipedia.org/wiki/Primality_Testing_for...

    Primality Testing for Beginners is an undergraduate-level mathematics book on primality tests, methods for testing whether a given number is a prime number, centered on the AKS primality test, the first method to solve this problem in polynomial time.

  9. List of tests - Wikipedia

    en.wikipedia.org/wiki/List_of_tests

    Commonly cited as the first personality test ... Test Description Year Fermat primality test: A probabilistic test to determine whether a number is probable prime.