Search results
Results from the WOW.Com Content Network
The duration of this slow diastolic depolarization (pacemaker phase) thus governs the cardiac chronotropism. It is also important to point out that the modulation of the cardiac rate by the autonomic nervous system also acts on this phase. Sympathetic stimuli induce the acceleration of rate by increasing the slope of the pacemaker phase, while ...
A pacemaker action potential is the kind of action potential that provides a reference rhythm for the network. The pacemaker potential is the slow depolarization because of sodium influx, and once threshold has been reached the continued depolarization due to calcium influx. [ 1 ]
In pacemaker cells (e.g. sinoatrial node cells), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels. These channels are also activated by an increase in voltage, however this time it is either due to the pacemaker potential (phase 4) or an oncoming action potential. The L-type calcium channels are ...
In a healthy sinoatrial node (SAN, a complex tissue within the right atrium containing pacemaker cells that normally determine the intrinsic firing rate for the entire heart [3] [4]), the pacemaker potential is the main determinant of the heart rate. Because the pacemaker potential represents the non-contracting time between heart beats , it is ...
These factors can contribute to an increased rate of complications which can lead to pacemaker failure. [ 2 ] Approximately 2.25 million pacemakers were implanted in the United States between 1990 and 2002, and of those pacemakers, about 8,834 were removed from patients because of device malfunction most commonly connected to generator ...
In a healthy heart, the SA node continuously produces action potentials, setting the rhythm of the heart (sinus rhythm), and so is known as the heart's natural pacemaker. The rate of action potentials produced (and therefore the heart rate) is influenced by the nerves that supply it. [2]
Individuals with a low heart rate prior to pacemaker implantation are more at risk of developing pacemaker syndrome. Normally the first chamber of the heart (atrium) contracts as the second chamber (ventricle) is relaxed, allowing the ventricle to fill before it contracts and pumps blood out of the heart.
Each pulse causes the targeted chamber(s) to contract and pump blood, [3] thus regulating the function of the electrical conduction system of the heart. The primary purpose of a pacemaker is to maintain an even heart rate, either because the heart's natural cardiac pacemaker provides an inadequate or irregular heartbeat, or because there is a ...