Search results
Results from the WOW.Com Content Network
In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from ...
19 K) has 25 known isotopes from 34 K to 57 K as well as 31 K, as well as an unconfirmed report of 59 K. [3] Three of those isotopes occur naturally: the two stable forms 39 K (93.3%) and 41 K (6.7%), and a very long-lived radioisotope 40 K (0.012%) Naturally occurring radioactive 40 K decays with a half-life of 1.248×10 9 years. 89% of those ...
Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope-ratio mass spectrometry , and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between ...
The standard atomic weight of a chemical element (symbol A r °(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, isotope 63 Cu (A r = 62.929) constitutes 69% of the copper on Earth, the rest being 65 Cu (A r = 64.927), so
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
The longest-lived of these isotopes, and the most relevantly studied, are 90 Sr with a half-life of 28.9 years, 85 Sr with a half-life of 64.853 days, and 89 Sr (89 Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes.
Naturally occurring titanium (22 Ti) is composed of five stable isotopes; 46 Ti, 47 Ti, 48 Ti, 49 Ti and 50 Ti with 48 Ti being the most abundant (73.8% natural abundance).Twenty-one radioisotopes have been characterized, with the most stable being 44 Ti with a half-life of 60 years, 45 Ti with a half-life of 184.8 minutes, 51 Ti with a half-life of 5.76 minutes, and 52 Ti with a half-life of ...
The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208 Pb.