enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix. In the physical sciences , an active transformation is one which actually changes the physical position of a system , and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Thus we can build an n × n rotation matrix by starting with a 2 × 2 matrix, aiming its fixed axis on S 2 (the ordinary sphere in three-dimensional space), aiming the resulting rotation on S 3, and so on up through S n−1. A point on S n can be selected using n numbers, so we again have ⁠ 1 / 2 ⁠ n(n − 1) numbers to describe any n × n ...

  4. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal.. The transformation matrix can be defined as = (), =, …,, or equivalently:

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Alternatively, the linear transformation could take the form of an n by n matrix, in which case the eigenvectors are n by 1 matrices. If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v ...

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    If m = n, then f is a function from R n to itself and the Jacobian matrix is a square matrix. We can then form its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point.

  8. Jacobi rotation - Wikipedia

    en.wikipedia.org/wiki/Jacobi_rotation

    In numerical linear algebra, a Jacobi rotation is a rotation, Q kℓ, of a 2-dimensional linear subspace of an n-dimensional inner product space, chosen to zero a symmetric pair of off-diagonal entries of an n×n real symmetric matrix, A, when applied as a similarity transformation:

  9. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    Then one can write t = pQ = vMQ, so the matrix product transformation MQ maps v directly to t. Continuing with row vectors, matrix transformations further reconfiguring n-space can be applied to the right of previous outputs. When a column vector is transformed to another column vector under an n × n matrix action, the operation occurs to the ...