Search results
Results from the WOW.Com Content Network
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
The carbylamine reaction (also known as the Hoffmann isocyanide synthesis) is the synthesis of an isocyanide by the reaction of a primary amine, chloroform, and base. The conversion involves the intermediacy of dichlorocarbene .
In the carbylamine reaction (also known as the Hofmann isocyanide synthesis) alkali base reacts with chloroform to produce dichlorocarbene. The carbene then converts primary amines to isocyanides. Illustrative is the synthesis of tert -butyl isocyanide from tert -butylamine in the presence of catalytic amount of the phase transfer catalyst ...
August Wilhelm von Hofmann (8 April 1818 – 5 May 1892 [2]) was a German chemist who made considerable contributions to organic chemistry. His research on aniline helped lay the basis of the aniline-dye industry, and his research on coal tar laid the groundwork for his student Charles Mansfield's practical methods for extracting benzene and toluene and converting them into nitro compounds and ...
The Suárez modification of the Hofmann–Löffler–Freytag reaction was the basis of the new synthetic method developed by H. Togo et al. [42] [43] The authors demonstrated that various N-alkylsaccharins (N-alkyl-1,2-benzisothiazoline-3-one-1,1,-dioxides) 77 are easily prepared in moderate to good yields by the reaction of N-alkyl(o-methyl ...
The Lossen rearrangement is the conversion of a hydroxamate ester to an isocyanate. Typically O-acyl, sulfonyl, or phosphoryl O-derivative are employed. Typically O-acyl, sulfonyl, or phosphoryl O-derivative are employed.
The polar reaction, N-cyclopentenyl pyrrolidine nucleophilic addition to the diazo compound, proceeds 1,500 times faster in polar DMSO than in non-polar decalin. On the other hand, a close analog of this reaction, N-cyclohexenyl pyrrolidine 1,3-dipolar cycloaddition to dimethyl diazomalonate, is sped up only 41-fold in DMSO relative to decalin.
The reaction is named for Anthony B. Baylis and Melville E. D. Hillman, two of the chemists who developed the reaction at Celanese; and K. Morita, who published earlier work [3] on the same. The MBH reaction offers several advantages in organic synthesis: It combines easily prepared starting materials with high atom economy.