enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon , or in the special case n = 4 , a cyclic quadrilateral .

  3. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    However, while the orthocenter and the circumcenter are in an acute triangle's interior, they are exterior to an obtuse triangle. The orthocenter is the intersection point of the triangle's three altitudes, each of which perpendicularly connects a side to the opposite vertex. In the case of an acute triangle, all three of these segments lie ...

  4. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each equal to ( n -1) π {\displaystyle \pi } . [ 4 ]

  5. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  6. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, all triangle centers coincide at its centroid. However the triangle centers generally take different ...

  7. Interior Department rule aims to crack down on methane leaks ...

    www.aol.com/news/interior-department-issues-rule...

    The Biden administration issued a final rule Wednesday aimed at curbing methane leaks from oil and gas drilling on federal and tribal lands, its latest action to crack down on emissions of methane ...

  8. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    A circle circumscribing any Delaunay triangle does not contain any other input points in its interior. If a circle passing through two of the input points doesn't contain any other input points in its interior, then the segment connecting the two points is an edge of a Delaunay triangulation of the given points.

  9. This is why you should always close the interior doors in ...

    www.aol.com/news/why-always-close-interior-doors...

    Following rigorous scientific wind testing, the Insurance Institute for Business & Home Safety is urging homeowners to close all interior doors, in addition to windows and exterior doors.