Search results
Results from the WOW.Com Content Network
Maxwell's equations are partial differential equations that relate the electric and magnetic fields to each other and to the electric charges and currents. Often, the charges and currents are themselves dependent on the electric and magnetic fields via the Lorentz force equation and the constitutive relations .
Electromagnetic field solvers (or sometimes just field solvers) are specialized programs that solve (a subset of) Maxwell's equations directly. They form a part of the field of electronic design automation, or EDA, and are commonly used in the design of integrated circuits and printed circuit boards. They are used when a solution from first ...
In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]
Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H ...
He applied a technique which is now generally called second quantization, [2] although this term is somewhat of a misnomer for electromagnetic fields, because they are solutions of the classical Maxwell equations. In Dirac's theory the fields are quantized for the first time and it is also the first time that the Planck constant enters the ...
In physics, the electric displacement field (denoted by D), also called electric flux density or electric induction, is a vector field that appears in Maxwell's equations.It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field.
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...
This class of marching-in-time computational techniques for Maxwell's equations uses either discrete Fourier or discrete Chebyshev transforms to calculate the spatial derivatives of the electric and magnetic field vector components that are arranged in either a 2-D grid or 3-D lattice of unit cells. PSTD causes negligible numerical phase ...