enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Special relativity. Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as ...

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.

  4. Hafele–Keating experiment - Wikipedia

    en.wikipedia.org/wiki/Hafele–Keating_experiment

    Also, gravitational time dilation was measured from a difference in elevation between two clocks of only 33 cm (13 in). [28] [29] Presently both gravitational and velocity effects are routinely incorporated, for example, into the calculations used for the Global Positioning System. [30]

  5. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German ...

  6. Experimental testing of time dilation - Wikipedia

    en.wikipedia.org/wiki/Experimental_testing_of...

    Decay time of muons: The time dilation formula is , where T0 is the proper time of a clock comoving with the muon, corresponding with the mean decay time of the muon in its proper frame. As the muon is at rest in S′, we have γ=1 and its proper time T′0 is measured. As it is moving in S, we have γ>1, therefore its proper time is shorter ...

  7. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    The gravitational redshift of a light wave as it moves upwards against a gravitational field (produced by the yellow star below). The effect is greatly exaggerated in this diagram. In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) [1][2] is the phenomenon that electromagnetic waves or ...

  8. Error analysis for the Global Positioning System - Wikipedia

    en.wikipedia.org/wiki/Error_analysis_for_the...

    General relativity takes into account also the effects that gravity has on the passage of time. In the context of GPS the most prominent correction introduced by general relativity is gravitational time dilation: the clocks located deeper in the gravitational potential well (i.e. closer to the attracting body) tick slower.

  9. Coordinate time - Wikipedia

    en.wikipedia.org/wiki/Coordinate_time

    Coordinate time scales. A coordinate time scale (or coordinate time standard) is a time standard designed for use as the time coordinate in calculations that need to take account of relativistic effects. The choice of a time coordinate implies the choice of an entire frame of reference. As described above, a time coordinate can to a limited ...