enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the ...

  3. Tensor operator - Wikipedia

    en.wikipedia.org/wiki/Tensor_operator

    Tensor operator. In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the ...

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distance r along the radial line connecting the point to the fixed point of origin; the polar angle θ between the radial line and a polar axis; and the ...

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved.

  6. Wigner–Eckart theorem - Wikipedia

    en.wikipedia.org/wiki/Wigner–Eckart_theorem

    Wigner–Eckart theorem. The Wigner–Eckart theorem is a theorem of representation theory and quantum mechanics. It states that matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is independent of angular momentum orientation, and the other a ...

  7. Clebsch–Gordan coefficients - Wikipedia

    en.wikipedia.org/wiki/Clebsch–Gordan_coefficients

    In physics, the Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum coupling in quantum mechanics. They appear as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. In more mathematical terms, the CG coefficients are used in representation theory, particularly of ...

  8. Particle in a spherically symmetric potential - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_spherically...

    In the general time-independent case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form: ^ = ^ + Here, is the mass of the particle, ^ is the momentum operator, and the potential () depends only on the vector magnitude of the position vector, that is, the radial distance from the ...

  9. Wigner D-matrix - Wikipedia

    en.wikipedia.org/wiki/Wigner_D-matrix

    The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU (2) and SO (3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors.