enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...

  3. Test statistic - Wikipedia

    en.wikipedia.org/wiki/Test_statistic

    Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.

  5. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  6. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    Neyman–Pearson lemma [5] — Existence:. If a hypothesis test satisfies condition, then it is a uniformly most powerful (UMP) test in the set of level tests.. Uniqueness: If there exists a hypothesis test that satisfies condition, with >, then every UMP test in the set of level tests satisfies condition with the same .

  7. Probability of error - Wikipedia

    en.wikipedia.org/wiki/Probability_of_error

    For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...

  8. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Statistical tests (such as hypothesis testing) generally require knowledge of the probability distribution of the test statistic. This is often a problem for likelihood ratios , where the probability distribution can be very difficult to determine.

  9. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    It is important to note that the test cannot prove the hypothesis (of no treatment effect), but it can provide evidence against it. [citation needed] The Fisher significance test involves a single hypothesis, but the choice of the test statistic requires an understanding of relevant directions of deviation from the hypothesized model.