enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  3. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...

  4. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  5. What the hell is reinforcement learning and how does it work?

    www.aol.com/hell-reinforcement-learning-does...

    Reinforcement learning is a subset of machine learning. It enables an agent to learn through the consequences of actions in a specific environment. Reinforcement learning is a behavioral learning ...

  6. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  7. Exploration-exploitation dilemma - Wikipedia

    en.wikipedia.org/wiki/Exploration-exploitation...

    In the context of machine learning, the exploration-exploitation tradeoff is fundamental in reinforcement learning (RL), a type of machine learning that involves training agents to make decisions based on feedback from the environment.

  8. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...

  9. Operant conditioning - Wikipedia

    en.wikipedia.org/wiki/Operant_conditioning

    Learning may be slower if reinforcement is intermittent, that is, following only some instances of the same response. Responses reinforced intermittently are usually slower to extinguish than are responses that have always been reinforced. [20] Size: The size, or amount, of a stimulus often affects its potency as a reinforcer. Humans and ...