Search results
Results from the WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
Operant conditioning chamber for reinforcement training. In behavioral psychology, reinforcement refers to consequences that increase the likelihood of an organism's future behavior, typically in the presence of a particular antecedent stimulus. [1] For example, a rat can be trained to push a lever to receive food whenever a light is turned on.
In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]
Imitation learning is a paradigm in reinforcement learning, where an agent learns to perform a task by supervised learning from expert demonstrations. It is also called learning from demonstration and apprenticeship learning. [1] [2] [3]
For example, the outcome of a game (i.e., whether one player won or lost) can be easily measured without providing labeled examples of desired strategies. Neuroevolution is commonly used as part of the reinforcement learning paradigm, and it can be contrasted with conventional deep learning techniques that use backpropagation ( gradient descent ...
A learning automaton is one type of machine learning algorithm studied since 1970s. Learning automata select their current action based on past experiences from the environment. It will fall into the range of reinforcement learning if the environment is stochastic and a Markov decision process (MDP) is used.
In reinforcement learning (RL), most real-world Markov Decision Process (MDP) problems have large or continuous state spaces, which typically require some sort of approximation to be represented efficiently. Linear function approximators [1] (LFAs) are widely adopted for their low theoretical complexity. Two sub-problems needs to be solved for ...